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In a recent paper we developed a new algorithm for the moment-constrained maximum
entropy problem in a multidimensional setting, using a multidimensional orthogonal poly-
nomial basis in the dual space of Lagrange multipliers to achieve numerical stability and
rapid convergence of the Newton iterations. Here we introduce two new improvements
for the existing algorithm, adding significant computational speedup in situations with
many moment constraints, where the original algorithm is known to converge slowly.
The first improvement is the use of the BFGS iterations to progress between successive
polynomial reorthogonalizations rather than single Newton steps, typically reducing the
total number of computationally expensive polynomial reorthogonalizations for the same
maximum entropy problem. The second improvement is a constraint rescaling, aimed to
reduce relative difference in the order of magnitude between different moment con-
straints, improving numerical stability of iterations due to reduced sensitivity of different
constraints to changes in Lagrange multipliers. We observe that these two improvements
can yield an average wall clock time speedup of 5–6 times compared to the original
algorithm.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The moment-constrained maximum entropy problem yields an estimate of a probability density with highest uncertainty
among all densities satisfying supplied moment constraints. The moment-constrained maximum entropy problem arises in a
variety of settings in solid state physics [5,16,17,22], econometrics [20,23], and geophysical applications such as weather and
climate prediction [3,4,15]. The approximation itself is obtained by maximizing the Shannon entropy under the constraints
established by measured moments (phase space-averaged monomials of problem variables).

Recently the author developed new algorithms for the multidimensional moment-constrained maximum entropy prob-
lem [1,2]. While the method in [1] is somewhat primitive and is only capable of solving two-dimensional maximum entropy
problems with moments of order up to 4, the improved algorithm in [2] uses a suitable orthonormal polynomial basis in the
space of Lagrange multipliers to improve convergence of its iterative optimization process, and is practically capable of solv-
ing two-dimensional problems with moments of order up to 8, three-dimensional problems with moments of order up to 6,
and four-dimensional problems of order up to 4, totalling 44, 83 and 69 moment constraints, respectively.

The algorithm in [2] demonstrated good numerical stability and reliable convergence for a variety of maximum entropy
problems with different moment constraints, including probability density functions (PDFs) with complex shapes. It was not
designed to achieve high computational speed, since at that point numerical stability and the ability to converge for a mul-
tidimensional problem with many constraints and a complex target PDF were the main goals of the algorithm development.
. All rights reserved.
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However, at the current stage it became clear that the algorithm, developed in [2], is stable and robust under a variety of
multidimensional maximum entropy problems, but can still be improved to achieve higher computational speeds while
retaining same numerical stability and reliable convergence for complex multidimensional maximum entropy problems.

In the current work we develop and test a new improved algorithm for the multidimensional moment-constrained max-
imum entropy problem, which utilizes multiple Broyden–Fletcher–Goldfarb–Shanno (BFGS) iterations [6,7,9,13,21] to adap-
tively progress between points of polynomial reorthonormalization, as opposed to single Newton steps introduced in [2].
This strategy aims to reduce the total number of computationally expensive polynomial reorthonormalizations needed to
achieve the optimal point, thus typically resulting in reduced computational time for the same problem. Additionally, a
new constraint rescaling is introduced to improve convergence by adjusting magnitude of the highest-order corner moment
constraints to the low-order constraints, thus reducing negative effects of the finite-precision machine arithmetic in the iter-
ative convergence process. As we demonstrate below, combining these two improvements can significantly reduce compu-
tational wall clock time for the same maximum entropy problem.

The manuscript is organized as follows. Section 2 outlines the basic algorithm with orthonormal polynomial basis devel-
oped in [2]. In Section 3 we introduce the following two improvements to the basic algorithm: the BFGS modification and the
new constraint rescaling. Section 4 contains the results of tests for the two-, three- and four-dimensional setting with mo-
ments of order up to 8, 6 and 4, respectively. Section 5 summarizes the results of this work.

2. The basic method with a polynomial basis

We here start with formulation of the moment-constrained maximum entropy problem in a multidimensional domain.
Here we follow notations introduced earlier in [1,2], where for~x 2 RN , with N being the dimension of the domain, an arbi-
trary monomial of ~x (the product of arbitrary powers of components of ~x) is concisely written as
~x
~i ¼

YN

k¼1

xik
k ;

~i 2 IN ; ð1Þ
such that the monomial order j~i j is the total power of all vector components, i.e.
j~ij ¼
XN

k¼1

ik: ð2Þ
Using the above notation, for a probability density q we write the set of moment constraints of the total power up to M as
l~iðqÞ ¼
Z

RN

~x
~iqð~xÞ d~x ¼ m~i; 0 6 j~ij 6 M; ð3Þ
where m0 is usually set to 1 to satisfy the normalization requirement for a probability distribution. Then, the solution to the
maximum entropy problem is a probability density q� which maximizes the Shannon entropy
SðqÞ ¼ �
Z

RN
qð~xÞ ln qð~xÞ d~x ð4Þ
(i.e. such that Sðq�Þ ¼maxq SðqÞ) over all probability densities q which satisfy the moment constraints in (3).
The constrained entropy maximization problem can be reduced [1,2,24] to the unconstrained minimization of the

Lagrangian function
LðqÞ ¼ SðqÞ þ
XM

j~ij¼0

k~iðl~iðqÞ �m~iÞ; ð5Þ
where k~i are the Lagrange multipliers. A necessary condition dL=dq ¼ 0 for the minimum of (5) yields the form of the opti-
mal probability distribution in terms of the Lagrange multipliers as
q�ð~x;~kÞ ¼ exp
XM

j~ij¼0

k~i~x
~i � 1

0
@

1
A: ð6Þ
Note that, unlike in [1,2], here we treat the normalization constant k0 as a generic unknown Lagrange multiplier, while it is
an explicit function of all other Lagrange multipliers. However, the current formulation simplifies the optimization problem
below at the expense of one extra degree of freedom, and, as we observed empirically, makes the optimization path less
‘‘stiff” and generally improves convergence.

Substituting (6) into (5) and shifting the normalization constant k0 to k0 þ 1 yields
LðkÞ ¼
Z

RN
exp

XM

j~ij¼0

k~i~x
~i

0
@

1
Ad~x�

XM

j~ij¼0

k~im~i; ð7Þ
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while the formula for the optimal probability density in (6) becomes
q�ð~x;~kÞ ¼ exp
XM

j~ij¼0

k~i~x
~i

0
@

1
A: ð8Þ
The Lagrangian function in (7) is minimized over its Lagrange multipliers. The gradient and Hessian of (7) are, respectively,
ðrLÞ~ið~kÞ ¼ l~iðq
�Þ �m~i; ð9aÞ

H~i~jð~kÞ ¼ l~iþ~jðq
�Þ: ð9bÞ
It is easy to show [1,2] that the Hessian in (9b) is a symmetric positive definite matrix, and, therefore, the Lagrangian min-
imization problem has a unique minimum, if exists. The minimum is reached when the gradient in (9a) is zero, which auto-
matically satisfies the moment constraints in (3).

At this stage it is necessary to choose new coordinates for optimization, because the Lagrangian function (7) in the mono-
mial basis~x~i has vastly different sensitivity to changes in different Lagrange multipliers, which negatively impacts conver-
gence of standard iterative optimization methods. Following [2], we replace basis monomials ~x~i with a set of Mth order
polynomials pkð~xÞ,
f~x~i; k~ig; ~i 2 IN; 0 6 jij 6 M ! fpkð~xÞ; ckg; 1 6 k 6 K;K ¼ ðM þ NÞ!
M!N!

; ð10Þ
where ck are the Lagrange multipliers of the new basis. Since each basis polynomial pkð~xÞ is of Mth order, the Lagrangian
function should have comparable sensitivity to changes in different ck. The polynomials pkð~xÞ are chosen at each step of iter-
ative optimization to satisfy the orthogonality condition with respect to the current iterate of q�
Z

RN
pkð~xÞplð~xÞq�ð~xÞ d~x ¼ dkl; ð11Þ
which is done via the modified Gram–Schmidt algorithm [2,8,10–12]. The Lagrangian function (7) is written in the new poly-
nomial coordinates as
Lð~cÞ ¼
Z

RN
exp

XK

k¼1

ckpkð~xÞ
 !

d~x�
XK

k¼1

ckpkð~mÞ; ð12Þ
where pkð~mÞ above in (12) denotes the polynomial pkð~xÞ where all monomials~x~i are replaced with corresponding values of
constraints m~i from (3). The corresponding optimal probability density function is now written as
q�ð~x;~cÞ ¼ exp
XK

k¼1

ckpkð~xÞ
 !

: ð13Þ
Due to the orthogonality requirement in (11), the Hessian matrix of (12) becomes the identity matrix
Hklð~cÞ ¼ dkl: ð14Þ
The minimization problem for the Lagrangian function in (12) is solved through the steepest descent iterative method,
where the next iterate of the Lagrange multipliers is chosen as
~cnþ1 ¼ �anrLð~cnÞ; ð15Þ
with an being the stepping distance determined by a standard inexact line search. With (14), the gradient descent in (15)
coincides with the Newton algorithm and yields a second order convergence in the vicinity of the optimal point. The starting
point for the iterations is chosen to be the Gaussian distribution with the mean and covariance matrices satisfying the con-
straints in (3) up to the second order. Standard shift, rotation and rescaling of coordinates [2] are used prior to the iterations,
simplifying the optimization problem to the one with zero mean state and identity covariance matrix. A high-order Gauss–
Hermite quadrature is used to compute the Gram–Schmidt orthonormalization and the gradient in (15). For more details on
the preconditioning and quadratures see [1,2].
3. The new algorithm

The basic optimization algorithm with orthonormal polynomial basis, described above and in [2], is observed to have
good numerical stability and reliable convergence for a variety of maximum entropy problems. Here we improve the basic
algorithm to generally achieve higher computational speeds while retaining same numerical stability and reliable conver-
gence for complex multidimensional maximum entropy problems, by using the BFGS iterations and the new constraint
rescaling, described below.
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3.1. The BFGS method

The basic optimization algorithm, described above in Section 2, performs the Gram–Schmidt reorthonormalization of the
basis polynomials at each step of the steepest descent iterations in (15), which, on one hand, yields second order conver-
gence in the vicinity of the optimal point, but, on the other hand, increases computational expense of the method, since
the computational cost of polynomial reorthonormalization roughly matches the cost of computing Hessian in the monomial
basis. Thus, an obvious way to reduce the computational expense of the basic algorithm is to perform several descent iter-
ations between the Gram–Schmidt reorthonormalizations. However, the steepest descent method in (15) in this case loses
precision down to the first order and becomes vulnerable to curvature anisotropy due to its lack of affine invariance. On the
other hand, we need to avoid computing Hessian during the iterations between polynomial basis reorthonormalizations,
which suggests using one of the quasi-Newton methods, such as the BFGS.

The Broyden–Fletcher–Goldfarb–Shanno formula [6,7,9,13,21] is a quasi-Newton method, widely used in optimization
algorithms. It needs the Hessian (or an approximation to it) at the starting point of iterations and only requires computation
of the gradient of the Lagrangian function in (12) at each successive iteration, which significantly reduces computational cost
in our case. The structure of the BFGS algorithm is the following:

� In the beginning of iterations, provide starting gradient of the Lagrangian function ðrLÞ0 and starting Hessian H0, which
is an identity matrix after polynomial reorthonormalization (see (14));

� At iteration m, perform the following steps:
(a) Find the direction of descent by solving
Hm
~dm ¼ �ðrLÞm; ð16Þ
(b) Perform a line search for the step distance am and find the next iterate ~cmþ1 as
~cmþ1 ¼~cm þ am
~dm; ð17Þ
(c) At the new iterate ~cmþ1 compute the gradient ðrLÞmþ1,
(d) Compute the new iterate of the pseudo-Hessian as
Hmþ1 ¼ Hm þ
~ym �~ym

~sm~ym
� ðHm~smÞ � ðHm~smÞ

~smHm~sm
; ð18Þ

where~sm ¼~cmþ1 �~cm and ~ym ¼ ðrLÞmþ1 � ðrLÞm.
In practice, to compute the descent direction in (16), we apply the Sherman–Morrison formula to the pseudo-Hessian in
(18) and obtain
H�1
mþ1 ¼ H�1

m þ
~sm~ym þ~ymH�1

m
~ym

ð~sm~ymÞ2
ð~sm �~smÞ �

1
~sm~ym

½ðH�1
m
~ymÞ �~sm þ~sm � ðH�1

m
~ymÞ�: ð19Þ
Then, the descent direction in (16) is computed as
~dm ¼ �H�1
m ðrLÞm: ð20Þ
For details on the Sherman–Morrison formula see, for example, [14].
As successive BFGS steps change the current iterate of the probability distribution q� in (13), the current set of polyno-

mials pk in (10), staying the same, gradually loses orthogonality with respect to changing q�, which negatively impacts con-
vergence of the BFGS iterations due to increased numerical errors in computation of the descent direction. Thus, when the
error in the descent direction becomes too large, the basis polynomials in (10) have to be reorthonormalized with respect to
the current iterate of (13) and the BFGS process has to be restarted. This adaptive reorthonormalization approach requires a
computationally cheap estimate of the numerical error in descent direction to be available at each step of the BFGS iterations.
One can observe from (20) that errors in the search direction ~dm originate from the errors in the computed gradient of the
Lagrangian function rL, amplified by the inverse pseudo-Hessian H�1

m . The main source of errors in the gradient of the
Lagrangian function are the Gauss–Hermite quadrature errors in computing moments of q�, which usually remain bounded
since the size of the quadrature and locations of abscissas are fixed during the course of computation. Thus, errors in the
computed descent direction increase mainly when amplified by the inverse pseudo-Hessian H�1 in (20), and may grow sig-
nificantly when H�1 becomes too ill-conditioned.

In the present algorithm, we monitor the condition number j of the inverse pseudo-Hessian H�1 during the BFGS itera-
tions and reorthonormalize the polynomial basis when j exceeds the value of 20 (this threshold value of j is empirically
found to be small enough to preserve numerical stability of iterations, and at the same time large enough to allow multiple
successive BFGS iterations between polynomial reorthonormalizations). Following [14], we compute the condition number
in the L1 norm as
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j ¼ kHk1kH
�1k1; kHk1 ¼max

i

X
j

jHijj: ð21Þ
Thanks to the Sherman–Morrison formula, both H and H�1 are readily available through (18) and (19), respectively, and
the computation of the condition number j is inexpensive.
3.2. The new constraint scaling

In [1,2] we developed a preconditioning algorithm which rescales the supplied constraints to the new set of constraints
which correspond to the target optimal probability density with zero mean state and identity covariance matrix. This pre-
conditioning allowed to have a unique choice of the Gauss–Hermite quadrature scaling in all dimensions regardless of the
initial constraints. However, one can observe that such a constraint scaling causes the moment constraints of high power to
differ from the moment constraints of low power by several orders of magnitude, which may negatively impact convergence
of the algorithm. As an example, let us look at the moments of a simple one-dimensional Gaussian distribution with zero
mean state and unit variance. The explicit formula for this distribution is
qGðxÞ ¼
1ffiffiffiffiffiffiffi
2p
p exp �1

2
x2

� �
: ð22Þ
The Gaussian distribution in (22) is an even function, and, therefore, all its moments of odd power are automatically zero.
However, for the moments of (22) of even power it is easy to verify the following recursive relation
lMþ2ðqGÞ ¼ ðM þ 1ÞlMðqGÞ; M even; ð23Þ
and, taking into account the fact that l2ðqGÞ ¼ 1, we obtain the following formula for the even moments of the Gaussian
distribution in (22)
lMðqGÞ ¼ ðM � 1Þ!!; M even; ð24Þ
where ðM � 1Þ!! denotes the factorial over odd numbers up to M � 1. As we can see, the Gaussian moments in (24) grow ex-
tremely fast with increasing M. This situation is further complicated by the fact that for a maximum entropy problem of mo-
ment constraints of order up to M the polynomial reorthonormalization procedure requires computation of moments of
order up to 2M. For instance, when the 8-order maximum entropy problem is started with the initial Gaussian distribution
of zero mean and unit variance, the polynomial reorthogonalization algorithm computes l16 ¼ 15!! ¼ 2;027;025, which ex-
ceeds l0 and l2 (computed by the same algorithm) by 6 orders of magnitude.

To partially remedy the difference in magnitude between moments of different order, we suggest the following strategy.
Instead of constraining the problem with the original set of moments, we will look for the optimal probability distribution
q�að~xÞ ¼ aNq�ða~xÞ; ð25Þ
with moment constraints
l~iðq
�
aÞ ¼ a�j~ijl~iðq

�Þ; 0 6 j~ij 6 M: ð26Þ
where a can be chosen to minimize difference in absolute magnitude between different moments. Note that for polynomial
reorthonormalization the moments of total power up to 2M have to be computed, and therefore need to be taken into ac-
count for determining a.

A general way to address a is to set it to an N � N matrix, and then choose its entries at each polynomial reorthonormal-
ization so that the relative distance between magnitudes of all the moments of order up to 2M is minimized, with subse-
quent rescaling of moment constraints. While such an elaborate strategy for a will, probably, be addressed by the author
in the future, it is somewhat sophisticated and requires a separate optimization subproblem to be solved for a at each poly-
nomial reorthonormalization, which could drive the computational cost of the problem further up. Instead, in the current
work we choose to pursue a simpler strategy for a.

Here the scaling a is chosen once in the beginning of the optimization process. As the moments of the target probability
distribution of order greater than M are unknown at the start, instead we choose a to set the values of the highest corner
moments ln

2M to the value of the normalization constant l0 of the starting guess of the iterations. The corner moments
ln

m are defined as follows
ln
mðqÞ ¼

Z
RN

xm
n qð~xÞ dx: ð27Þ
With the Gaussian starting distribution of zero mean and identity covariance matrix, all the corner moments of order 2M
are equal to ð2M � 1Þ!!, while the normalization constant l0 ¼ 1. With this, a is taken to be a scalar
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M � 1Þ!!2M

p
: ð28Þ



Table 2
Comparison between different algorithms for the maximum entropy problem for the joint 2D PDF of PCs 1 and 3, moments of order up to 8

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 85 85 13.28 Basic vs. – 0.296 0.264 0.0143
BFGS 54 23 3.929 BFGS vs. 3.38 – 0.894 0.05
Scaled 23 23 3.513 Scaled vs. 3.78 1.12 – 0.0541
S-BFGS 5 1 0.19 S-BFGS vs. 69.9 20.7 18.5 –

Notations: Niter , number of iterations; Nreort , number of polynomial reorthogonalizations; Time, wall clock time in seconds.
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Fig. 1. The joint 2D PDFs of the PCs 1–4 as measured directly from the long-term model simulation through standard bin-counting.

Table 1
Comparison between different algorithms for the maximum entropy problem for the joint 2D PDF of PCs 1 and 2, moments of order up to 8

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 127 127 20.1 Basic vs. – 0.467 0.245 0.179
BFGS 117 56 9.386 BFGS vs. 2.14 – 0.524 0.4
Scaled 32 32 4.919 Scaled vs. 4.09 1.91 – 0.731
S-BFGS 41 22 3.597 S-BFGS vs. 5.59 2.61 1.37 –

Notations: Niter , number of iterations; Nreort , number of polynomial reorthogonalizations; Time, wall clock time in seconds.
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Table 8
Comparison between different algorithms for the maximum entropy problem for the joint 4D PDF of PCs 1–4, moments of order up to 4

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 24 24 1750 Basic vs. – 0.789 1 0.718
BFGS 28 14 1380 BFGS vs. 1.27 – 1.27 0.9
Scaled 24 24 1750 Scaled vs. 1 0.788 – 0.718
S-BFGS 26 13 1257 S-BFGS vs. 1.39 1.1 1.39 –

Notations: Niter , number of iterations; Nreort, number of polynomial reorthogonalizations; Time, wall clock time in seconds.

Table 3
Comparison between different algorithms for the maximum entropy problem for the joint 2D PDF of PCs 1 and 4, moments of order up to 8

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 113 113 17.74 Basic vs. – 0.418 0.291 0.217
BFGS 93 44 7.413 BFGS vs. 2.39 – 0.696 0.5
Scaled 32 32 5.16 Scaled vs. 3.44 1.44 – 0.746
S-BFGS 43 23 3.848 S-BFGS vs. 4.61 1.93 1.34 –

Notations: Niter , number of iterations; Nreort, number of polynomial reorthogonalizations; Time, wall clock time in seconds.

Table 4
Comparison between different algorithms for the maximum entropy problem for the joint 2D PDF of PCs 2 and 3, moments of order up to 8

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 51 51 7.921 Basic vs. – 0.359 0.35 0.14
BFGS 30 18 2.842 BFGS vs. 2.79 – 0.976 0.4
Scaled 18 18 2.774 Scaled vs. 2.86 1.02 – 0.399
S-BFGS 12 7 1.106 S-BFGS vs. 7.16 2.57 2.51 –

Notations: Niter , number of iterations; Nreort, number of polynomial reorthogonalizations; Time, wall clock time in seconds.

Table 5
Comparison between different algorithms for the maximum entropy problem for the joint 2D PDF of PCs 2 and 4, moments of order up to 8

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 63 63 9.913 Basic vs. – 0.365 0.327 0.262
BFGS 40 22 3.621 BFGS vs. 2.74 – 0.895 0.7
Scaled 21 21 3.241 Scaled vs. 3.06 1.12 – 0.802
S-BFGS 32 15 2.599 S-BFGS vs. 3.81 1.39 1.25 –

Notations: Niter , number of iterations; Nreort, number of polynomial reorthogonalizations; Time, wall clock time in seconds.

Table 6
Comparison between different algorithms for the maximum entropy problem for the joint 2D PDF of PCs 3 and 4, moments of order up to 8

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 16 16 2.506 Basic vs. – 0.846 0.945 0.474
BFGS 25 13 2.121 BFGS vs. 1.18 – 1.12 0.6
Scaled 15 15 2.367 Scaled vs. 1.06 0.896 – 0.502
S-BFGS 15 7 1.189 S-BFGS vs. 2.11 1.78 1.99 –

Notations: Niter , number of iterations; Nreort, number of polynomial reorthogonalizations; Time, wall clock time in seconds.

Table 7
Comparison between different algorithms for the maximum entropy problem for the joint 3D PDF of PCs 1–3, moments of order up to 6

Method Niter Nreort Time Speedups Basic BFGS Scaled S-BFGS

Basic 164 164 728.5 Basic vs. – 0.868 0.262 0.168
BFGS 207 132 632.2 BFGS vs. 1.15 – 0.302 0.2
Scaled 40 40 191.1 Scaled vs. 3.81 3.31 – 0.639
S-BFGS 39 24 122.2 S-BFGS vs. 5.96 5.17 1.56 –

Notations: Niter , number of iterations; Nreort, number of polynomial reorthogonalizations; Time, wall clock time in seconds.
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One can verify that setting a to the value in (28) automatically equates the new normalization constant and all corner mo-
ments of order 2M for the starting Gaussian distribution.

With the rescaling in (28), one can check what the difference between moments becomes for the example shown in (22).
For the eighth order moment problem, we have
Fig. 4.
order o

Fig. 3.
order o

Fig. 2.
order o
a ¼ 2:4784;
l0 ¼ 1; l2 ¼ 0:163; l4 ¼ 0:0795;
l6 ¼ 0:0647; l8 ¼ 0:0737; l10 ¼ 0:108;
l12 ¼ 0:193; l14 ¼ 0:409; l16 ¼ 1;

ð29Þ
that is, the 6-order difference in magnitudes of the moments is reduced to a single order. As we can see, the scaling in (28) is
quite efficient, despite its apparent simplicity. After q�að~xÞ is found in the explicit form of (6), it is easy to convert it into q�ð~xÞ
via (25).
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The 2D probability density functions of PCs 1 and 4. Left picture – actual PDF recorded from model simulation by bin-counting, right picture – 8-
ptimal PDF (44 total moment constraints).
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The test maximum entropy problems we consider here are the moment constrained climatological probability density
functions of a model of wind stress-driven large-scale oceanic currents [18,19], which were earlier used in [2] to test the
convergence of the basic maximum entropy algorithm. A subset of model variables, consisting of the first four principal com-
ponents (PC) of the model is used to produce the 2-, 3- and 4-dimensional joint PDFs and their moment constraints. The joint
2-dimensional PDFs for PCs 1–4, as captured directly by bin-counting from the model simulation, are shown in Fig. 1. For
more details on the model physics and simulation runs, see [2].

The basic algorithm, developed in [2], is known to converge for the probability distribution states, shown in Fig. 1, with
the following sets of moment constraints: eighth order moments for 2D joint PDFs of PCs 1–4, 6-order moments for the 3D
PDF of PCs 1–3 and 4-order moments for the 4D PDF of PCs 1–4. In the following sections we test convergence of the mod-
ified algorithms, described above, in this setting. The wall clock time, recorded for computations, corresponds to numerical
simulations on an Athlon 64 3800+ processor. The speedup of one simulation relative to another is defined as the ratio of
their wall clock times, which are given in seconds in Tables 1–8.

4.1. Maximum entropy problem of dimension 2 and moment order 8

In Figs. 2–7 and Tables 1–6 we show the results obtained for the two-dimensional PDFs of the PCs 1–4 (6 PDFs in total)
with moment constraints of order up to 8 (44 moment constraints in total for each maximum entropy problem). Observe
that the wall clock time, needed for convergence, drop significantly with either the BFGS or new constraint scaling applied,
with generally better results obtained when both the BFGS and scaling are applied simultaneously. Speedups of between 2
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and 7 times relative to the basic algorithm are observed (excluding an apparently coincidental speedup of 70 for PCs 1 and 3).
Note that using the BFGS method sometimes increases the total number of iterations, but substantially reduces the number
of computationally expensive polynomial reorthogonalizations, thus still resulting in improved speedup. The new constraint
scaling should be particularly efficient in the current setting, since it allows to reduce the difference in values of computed
moments from six orders of magnitude to just one. Further, as we decrease the moment order for the maximum entropy
problems of higher dimension, we will observe less impact on the speedup brought in by the constraint rescaling, since
the difference in magnitudes of constraints generally diminishes with decreasing order.

4.2. Maximum entropy problem of dimension 3 and moment order 6

In Fig. 8 and Table 7 we show the results obtained for the three-dimensional PDF of the PCs 1–3 with moment constraints
of order up to 6 (83 moment constraints in total). Again, observe that the wall clock time, needed for convergence, decreases
with either BFGS or new constraint scaling applied, with the best result obtained when both the BFGS and scaling are applied
simultaneously, with the speedup of six times obtained relative to the basic algorithm. The new constraint scaling here has a
major impact on the wall clock time speedup, reducing the computational time by a factor of 3.5 both with or without BFGS,
while the BFGS reduces the computational time by a factor of 1.2–1.5.

4.3. Maximum entropy problem of dimension 4 and moment order 4

In Fig. 9 and Table 8 we show the results obtained for the four-dimensional PDF of the PCs 1–4 with moment constraints
of order up to 4 (69 moment constraints in total). Observe that the wall clock time, needed for convergence, moderately de-
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creases with applying the BFGS iterations, yielding speedup of 1.27–1.39 relative to either basic or scaled algorithm without
BFGS. On the other hand, the new constraint scaling has virtually no impact here. This is most likely due to the fact that the
highest corner moment constraints, computed in this problem during the polynomial reorthogonalization, are of order 8,
which for the Gaussian distribution of mean 0 and variance 1 are equal to 105. Thus, the unrescaled moment constraints
differ in magnitude only by roughly two orders, thus rendering the constraint scaling largely unnecessary.

5. Summary

In the current work we develop and test two new improvements for the earlier developed algorithm [2] for the multidi-
mensional moment-constrained maximum entropy problem. The first modification of the algorithm utilizes multiple Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) iterations [6,7,9,13,21] to adaptively progress between points of polynomial
reorthonormalization, as opposed to single Newton steps introduced originally in [2]. This strategy aims to decrease the total
number of computationally expensive polynomial reorthonormalizations needed to achieve the optimal point, thus typically
resulting in reduced computational wall clock time for the same problem. The second modification of the algorithm is a new
moment constraint rescaling, designed to improve convergence by adjusting the magnitude of the highest-order corner con-
straints to the magnitude of the low-order constraints, thus reducing negative effects of the finite-precision machine arith-
metic in the iterative convergence process. These two improvements are tested for the same set of multidimensional
moment-constrained maximum entropy problems as in [2], for which the original algorithm from [2] is known to converge.
This set of maximum entropy problems includes two-dimensional problems with moment constraints of order up to 8 (44
moment constraints in total), a three-dimensional problem with moment constraints of order up to 6 (83 moment con-
straints in total), and a four-dimensional problem with moment constraints of order up to 4 (69 moment constraints in total).
The test maximum entropy problems are based on the long-term climatological statistics of a model for wind stress-driven
large-scale ocean circulation [18,19]. It is found that the new improvements typically yield the speedup of 5–6 times as com-
pared to the existing algorithm from [2] for the problems tested (also a coincidental anecdotal speedup of 70 was recorded).
The greatest improvement in wall clock time speedup is obtained mainly in high (6–8) order maximum entropy problems,
while in low-order four-dimensional test problem the observed speedup is rather moderate.

Future work in this direction will be aimed at the ability of the developed suite of algorithms to converge for problems
with higher dimension and moment constraint order. As the number of iterations needed to converge for a higher-moment
maximum entropy problem increases, as well as does the time to perform a single iteration in a higher-dimensional setting,
various options for speeding up the iteration process will be studied, mainly focusing on parallel implementation of the
Gauss–Hermite quadratures in a parallel computational environment. In particular, the use of contemporary graphic pro-
cessing units (GPU), naturally suitable for SIMD floating point operations, will be considered for speeding up the quadrature
computations.
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